Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3209, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268622

RESUMO

Cytokinesis partitions cellular content between daughter cells. It relies on the formation of an acto-myosin contractile ring, whose constriction induces the ingression of the cleavage furrow between the segregated chromatids. Rho1 GTPase and its RhoGEF (Pbl) are essential for this process. However, how Rho1 is regulated to sustain furrow ingression while maintaining correct furrow position remains poorly defined. Here, we show that during asymmetric division of Drosophila neuroblasts, Rho1 is controlled by two Pbl isoforms with distinct localisation. Spindle midzone- and furrow-enriched Pbl-A focuses Rho1 at the furrow to sustain efficient ingression, while Pbl-B pan-plasma membrane localization promotes the broadening of Rho1 activity and the subsequent enrichment of myosin on the entire cortex. This enlarged zone of Rho1 activity is critical to adjust furrow position, thereby preserving correct daughter cell size asymmetry. Our work highlights how the use of isoforms with distinct localisation makes an essential process more robust.


Assuntos
Divisão Celular Assimétrica , Citocinese , Animais , Fatores de Troca de Nucleotídeo Guanina Rho , Drosophila , Membrana Celular , Isoformas de Proteínas/genética , Fuso Acromático
2.
Mol Biol Cell ; 31(3): 143-148, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999511

RESUMO

While the organization of inanimate systems such as gases or liquids is predominantly thermodynamically driven-a mixture of two gases will tend to mix until they reach equilibrium-biological systems frequently exhibit organization that is far from a well-mixed equilibrium. The anisotropies displayed by cells are evident in some of the dynamic processes that constitute life including cell development, movement, and division. These anisotropies operate at different length-scales, from the meso- to the nanoscale, and are proposed to reflect self-organization, a characteristic of living systems that is becoming accessible to reconstitution from purified components, and thus a more thorough understanding. Here, some examples of self-organization underlying cellular anisotropies at the cellular level are reviewed, with an emphasis on Rho-family GTPases operating at the plasma membrane. Given the technical challenges of studying these dynamic proteins, some of the successful approaches that are being employed to study their self-organization will also be considered.


Assuntos
Anisotropia , Fenômenos Fisiológicos Celulares/fisiologia , Células/metabolismo , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Termodinâmica , Proteínas rho de Ligação ao GTP/metabolismo
3.
EMBO J ; 38(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559330

RESUMO

While Rho GTPases are indispensible regulators of cellular polarity, the mechanisms underlying their anisotropic activation at membranes have been elusive. Using the budding yeast Cdc42 GTPase module, which includes a guanine nucleotide exchange factor (GEF) Cdc24 and the scaffold Bem1, we find that avidity generated via multivalent anionic lipid interactions is a critical mechanistic constituent of polarity establishment. We identify basic cluster (BC) motifs in Bem1 that drive the interaction of the scaffold-GEF complex with anionic lipids at the cell pole. This interaction appears to influence lipid acyl chain ordering, thus regulating membrane rigidity and feedback between Cdc42 and the membrane environment. Sequential mutation of the Bem1 BC motifs, PX domain, and the PH domain of Cdc24 lead to a progressive loss of cellular polarity stemming from defective Cdc42 nanoclustering on the plasma membrane and perturbed signaling. Our work demonstrates the importance of avidity via multivalent anionic lipid interactions in the spatial control of GTPase activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
4.
Mol Biol Cell ; 29(11): 1299-1310, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668348

RESUMO

The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatiotemporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity.


Assuntos
Nanopartículas/química , Fosfatidilserinas/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Difusão , Proteínas de Membrana/metabolismo
5.
Elife ; 62017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304276

RESUMO

Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Canais de Cloreto/metabolismo , Microscopia Intravital , Microscopia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais
6.
J Cell Biol ; 211(3): 517-32, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26553926

RESUMO

The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box-dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3-BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes.


Assuntos
Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/genética , Dípteros/metabolismo , Proteínas de Drosophila/metabolismo , Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Cromossomos/metabolismo , Quebras de DNA de Cadeia Dupla , Dípteros/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Mol Biol Cell ; 26(13): 2519-34, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25947137

RESUMO

The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4∆ and bud6∆ alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis.


Assuntos
Endocitose/fisiologia , Exocitose/fisiologia , Saccharomycetales/fisiologia , Polaridade Celular/fisiologia , Redes e Vias Metabólicas , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
8.
J Cell Biol ; 200(4): 407-18, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23401000

RESUMO

Formation of a stable polarity axis underlies numerous biological processes. Here, using high-resolution imaging and complementary mathematical modeling we find that cell polarity can be established via the spatial coordination of opposing membrane trafficking activities: endocytosis and exocytosis. During polarity establishment in budding yeast, these antagonistic processes become apposed. Endocytic vesicles corral a central exocytic zone, tightening it to a vertex that establishes the polarity axis for the ensuing cell cycle. Concomitantly, the endocytic system reaches an equilibrium where internalization events occur at a constant frequency. Endocytic mutants that failed to initiate periodic internalization events within the corral displayed wide, unstable polarity axes. These results, predicted by in silico modeling and verified by high resolution in vivo studies, identify a requirement for endocytic corralling during robust polarity establishment.


Assuntos
Polaridade Celular/fisiologia , Endocitose/fisiologia , Modelos Biológicos , Saccharomyces/citologia , Simulação por Computador , Exocitose/fisiologia , Transporte Proteico , Saccharomyces/metabolismo , Processos Estocásticos
9.
Curr Opin Cell Biol ; 24(6): 845-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23141634

RESUMO

Growth of the plasma membrane is as fundamental to cell reproduction as DNA replication, chromosome segregation and ribosome biogenesis, yet little is known about the underlying mechanisms. Membrane growth during the cell cycle requires mechanisms that control the initiation, location, and extent of membrane growth, as well as mechanisms that coordinate membrane growth with cell cycle progression. Recent experiments have established links between membrane growth and core cell cycle regulators. Further analysis of these links will yield insights into conserved and fundamental mechanisms of cell growth. A better understanding of the post-Golgi pathways by which membrane growth occurs will be essential for future progress.


Assuntos
Ciclo Celular , Membrana Celular/metabolismo , Células/citologia , Animais , Células/metabolismo , Citocinese , Endocitose , Exocitose , Humanos , Mitose
10.
Mol Biol Cell ; 23(17): 3336-47, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22767578

RESUMO

Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which polarize the actin cytoskeleton for delivery of membrane to growth sites via the secretory pathway. Here we investigate whether Cdk1 plays additional roles in the initiation and maintenance of polarized cell growth. We find that inhibition of Cdk1 causes a cell surface growth defect that is as severe as that caused by actin depolymerization. However, unlike actin depolymerization, Cdk1 inhibition does not result in a massive accumulation of intracellular secretory vesicles or their cargoes. Analysis of post-Golgi vesicle dynamics after Cdk1 inhibition demonstrates that exocytic vesicles are rapidly mistargeted away from the growing bud, possibly to the endomembrane/vacuolar system. Inhibition of Cdk1 also causes defects in the organization of endocytic and exocytic zones at the site of growth. Cdk1 thus modulates membrane-trafficking dynamics, which is likely to play an important role in coordinating cell surface growth with cell cycle progression.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina , Proteína Quinase CDC2/antagonistas & inibidores , Ciclo Celular , Crescimento Celular , Membrana Celular , Polaridade Celular , Endocitose , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores
11.
Eukaryot Cell ; 11(5): 590-600, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22447923

RESUMO

Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae, the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P(2) production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Via Secretória , Vesículas Secretórias/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Eletroforese em Gel de Poliacrilamida , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Imunoprecipitação , Fosfatidilinositol 4,5-Difosfato/biossíntese , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatos de Fosfatidilinositol/biossíntese , Fosfatos de Fosfatidilinositol/genética , Plasmídeos/metabolismo , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas rab de Ligação ao GTP/metabolismo
12.
PLoS Genet ; 5(11): e1000727, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19911052

RESUMO

The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Delta cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates.


Assuntos
Biologia Computacional/métodos , Ciclina G1/genética , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fase G1 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Fosfatase 2/genética , Subunidades Proteicas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Leveduras/genética , Leveduras/crescimento & desenvolvimento
13.
J Cell Biol ; 183(1): 63-75, 2008 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-18824564

RESUMO

Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nuclear mitotic events. In untreated embryos or embryos arrested in interphase with a protein synthesis inhibitor, injection of CycB accelerates nuclear envelope breakdown and mitotic remodeling of the cytoskeleton. Upon activation of the Grapes(checkpoint kinase 1) (Grp(Chk1))-dependent S-phase checkpoint, increased levels of CycB drives cytoplasmic but not nuclear mitotic events. Grp(Chk1) prevents nuclear CDK1 activation by delaying CycB nuclear accumulation through Wee1-dependent and independent mechanisms.


Assuntos
Proteína Quinase CDC2/metabolismo , Núcleo Celular/metabolismo , Ciclina B/metabolismo , Proteínas Quinases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Afidicolina/farmacologia , Proteína Quinase CDC2/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Núcleo Celular/efeitos dos fármacos , Divisão do Núcleo Celular/efeitos dos fármacos , Divisão do Núcleo Celular/fisiologia , Quinase 1 do Ponto de Checagem , Ciclina B/farmacologia , Cicloeximida/farmacologia , Citocinese/efeitos dos fármacos , Citocinese/fisiologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Cinetocoros/metabolismo , Mitose/efeitos dos fármacos , Mutação , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/fisiologia , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Purinas/farmacologia , Quinolinas/farmacologia , Proteínas Recombinantes/farmacologia , Roscovitina , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/fisiologia , Tiazóis/farmacologia
14.
PLoS One ; 3(4): e2022, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18431499

RESUMO

The septins are a conserved family of proteins that have been proposed to carry out diverse functions. In budding yeast, the septins become localized to the site of bud emergence in G1 but have not been thought to carry out important functions at this stage of the cell cycle. We show here that the septins function in redundant mechanisms that are required for formation of the bud neck and for the normal pattern of cell growth early in the cell cycle. The Shs1 septin shows strong genetic interactions with G1 cyclins and is directly phosphorylated by G1 cyclin-dependent kinases, consistent with a role in early cell cycle events. However, Shs1 phosphorylation site mutants do not show genetic interactions with the G1 cyclins or obvious defects early in the cell cycle. Rather, they cause an increased cell size and aberrant cell morphology that are dependent upon inhibitory phosphorylation of Cdk1 at the G2/M transition. Shs1 phosphorylation mutants also show defects in interaction with the Gin4 kinase, which associates with the septins during G2/M and plays a role in regulating inhibitory phosphorylation of Cdk1. Phosphorylation of Shs1 by G1 cyclin-dependent kinases plays a role in events that influence Cdk1 inhibitory phosphorylation.


Assuntos
Fase G1 , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citologia , Sequência de Aminoácidos , Proliferação de Células , Sequência Consenso , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Dados de Sequência Molecular , Mutação/genética , Mapeamento de Peptídeos , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/enzimologia
15.
Nat Cell Biol ; 9(5): 506-15, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17417630

RESUMO

The mechanisms that control cell growth during the cell cycle are poorly understood. In budding yeast, cyclin dependent kinase 1 (Cdk1) triggers polarization of the actin cytoskeleton and bud emergence in late G1 through activation of the Cdc42 GTPase. However, Cdk1 is not thought to be required for subsequent growth of the bud. Here, we show that Cdk1 has an unexpected role in controlling bud growth after bud emergence. Moreover, we show that G1 cyclin-Cdk1 complexes specifically phosphorylate multiple proteins associated with Cdc24, the guanine nucleotide-exchange factor (GEF) that activates the Cdc42 GTPase. A mutant form of a Cdc24-associated protein that fails to undergo Cdk1-dependent phosphorylation causes defects in bud growth. These results provide a direct link between Cdk1 activity and the control of polarized cell growth.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclo Celular/fisiologia , Polaridade Celular , Proteínas Fúngicas/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Proteína cdc42 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/genética , Ciclo Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Ciclina G , Ciclinas/metabolismo , Inibidores Enzimáticos/farmacologia , Exocitose , Proteínas Fúngicas/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Complexos Multiproteicos/metabolismo , Mutação , Fosforilação , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Vesículas Secretórias/metabolismo , Fatores de Tempo
16.
Mol Biol Cell ; 17(6): 2824-38, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16571678

RESUMO

The highly conserved small Rho G-protein, Cdc42p plays a critical role in cell polarity and cytoskeleton organization in all eukaryotes. In the yeast Saccharomyces cerevisiae, Cdc42p is important for cell polarity establishment, septin ring assembly, and pheromone-dependent MAP-kinase signaling during the yeast mating process. In this study, we further investigated the role of Cdc42p in the mating process by screening for specific mating defective cdc42 alleles. We have identified and characterized novel mating defective cdc42 alleles that are unaffected in vegetative cell polarity. Replacement of the Cdc42p Val36 residue with Met resulted in a specific cell fusion defect. This cdc42[V36M] mutant responded to mating pheromone but was defective in cell fusion and in localization of the cell fusion protein Fus1p, similar to a previously isolated cdc24 (cdc24-m6) mutant. Overexpression of a fast cycling Cdc42p mutant suppressed the cdc24-m6 fusion defect and conversely, overexpression of Cdc24p suppressed the cdc42[V36M] fusion defect. Taken together, our results indicate that Cdc42p GDP-GTP cycling is critical for efficient cell fusion.


Assuntos
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Fusão Celular , Polaridade Celular , Genótipo , Dados de Sequência Molecular , Mutagênese , Plasmídeos , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/fisiologia
17.
Eukaryot Cell ; 3(4): 1049-61, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15302837

RESUMO

During Saccharomyces cerevisiae mating, chemotropic growth and cell fusion are critical for zygote formation. Cdc24p, the guanine nucleotide exchange factor for the Cdc42 G protein, is necessary for oriented growth along a pheromone gradient during mating. To understand the functions of this critical Cdc42p activator, we identified additional cdc24 mating mutants. Two mating-specific mutants, the cdc24-m5 and cdc24-m6 mutants, each were isolated with a mutated residue in the conserved catalytic domain. The cdc24-m6 mutant responds normally to pheromone and orients its growth towards a mating partner yet accumulates prezygotes during mating. cdc24-m6 prezygotes have two apposed intact cell walls and do not correctly localize proteins required for cell fusion, despite normal exocytosis. Our results indicate that the exchange factor Cdc24p is necessary for maintaining or restricting specific proteins required for cell fusion to the cell contact region during mating.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Quimiotaxia/fisiologia , Dados de Sequência Molecular , Mutação , Feromônios/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Proteína cdc42 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...